The complex Laguerre symplectic ensemble of non-Hermitian matrices
نویسندگان
چکیده
منابع مشابه
The Complex Laguerre Symplectic Ensemble of Non-Hermitian Matrices
We solve the complex extension of the chiral Gaussian Symplectic Ensemble, defined as a Gaussian two-matrix model of chiral non-Hermitian quaternion real matrices. This leads to the appearance of Laguerre polynomials in the complex plane and we prove their orthogonality. Alternatively, a complex eigenvalue representation of this ensemble is given for general weight functions. All k-point correl...
متن کاملPseudo-Hermitian ensemble of random Gaussian matrices.
It is shown how pseudo-Hermiticity, a necessary condition satisfied by operators of PT symmetric systems can be introduced in the three Gaussian classes of random matrix theory. The model describes transitions from real eigenvalues to a situation in which, apart from a residual number, the eigenvalues are complex conjugate.
متن کاملDifferential Recursion Relations for Laguerre Functions on Hermitian Matrices
Abstract. In our previous papers [1, 2] we studied Laguerre functions and polynomials on symmetric cones Ω = H/L. The Laguerre functions l n , n ∈ Λ, form an orthogonal basis in L(Ω, dμν ) and are related via the Laplace transform to an orthogonal set in the representation space of a highest weight representations (πν ,Hν) of the automorphism group G corresponding to a tube domain T (Ω). In thi...
متن کاملFermionic Mapping For Eigenvalue Correlation Functions Of (Weakly) Non-Hermitian Symplectic Ensemble
The eigenvalues of an arbitrary quaternionic matrix have a joint probability distribution function first derived by Ginibre. We show that there exists a mapping of this system onto a fermionic field theory and then use this mapping to integrate over the positions of the eigenvalues and obtain eigenvalue density as well as all higher correlation functions for both the strongly and weakly non-Her...
متن کاملCongruence of Hermitian Matrices by Hermitian Matrices
Two Hermitian matrices A, B ∈ Mn(C) are said to be Hermitian-congruent if there exists a nonsingular Hermitian matrix C ∈ Mn(C) such that B = CAC. In this paper, we give necessary and sufficient conditions for two nonsingular simultaneously unitarily diagonalizable Hermitian matrices A and B to be Hermitian-congruent. Moreover, when A and B are Hermitian-congruent, we describe the possible iner...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nuclear Physics B
سال: 2005
ISSN: 0550-3213
DOI: 10.1016/j.nuclphysb.2005.09.039